

Nurse-Led Peer Facilitated Diabetes Prevention and Early Intervention Program

Presenter: Oluremi Adejumo, MSc., RN, BSN

Learning Objectives

At the end of this presentation, learners will:

- Develop knowledge and skills to implement an effective Diabetes Prevention Program (DPP) in marginalized population(s); and
- II. Identify at least three common implementation barriers and facilitators in translation of evidencebased diabetes prevention research to practice.

Content

- I. Background: Prediabetes / Burden / Significance / Risk Factors
- I. Defining Local Problem
- III. Current Practice vs. Best Practices
- IV. Barriers and Facilitators
- V. Statement of Purpose
- VI. Goals: Short-Term / Long-Term
- VII. Summary of Literature Synthesis
- VIII. Methodology Guided by the RE-AIM Framework
- IX. Results: Descriptive Stats / Statistical Analyses
- X. Limitations
- XI. Benefits
- XII. Conclusions and Sustainability
- XIII. References
- XIV. Acknowledgements

I. Background

Prediabetes:

- Antecedent to type 2 diabetes [T2D]
- Emerging threat to the nation's health
 - Adult rate 个sed from 20% in 2012 to 34% in 2015
- 86 million people in the U.S. have prediabetes
- Only 9 million are aware of diagnoses
- ↑ prevalence in men (36.6%) than women (29.3%)
- Projected to rise by 40% in 2030

Burden of Diabetes & Comorbidities

- Strong correlation for diabetes and CVDs
- Leading causes of death and disability in the U.S.
 - #1 Heart disease (635,260 Deaths)
 - #5 Stroke (142,142 Deaths)
 - #7 Diabetes (80,058 Deaths)
- Drivers of ↑sed health expenditures
- Heart Disease & Stroke _____ \$199 billion per year
- Projected will further 个 burden

Significance of

Diabetes Prevention Program (DPP)

Integration of DPP will:

- Delay or revert progression of prediabetes
- Encourage sustained lifestyle changes
- Empower men to better take care of their health
- ↓ Cost of prevention (less than \$500 per person per year)
- Bridge current gaps in health care services

- Towards best practices

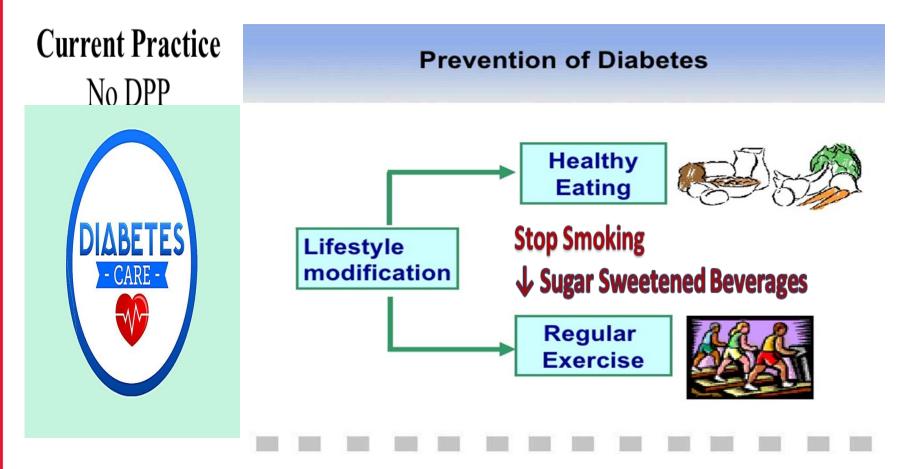
Risk Factors

Non-modifiable

- Age
- Gender
- Genetic Predisposition
- Environment

Modifiable

- Overweight/Obesity
 - Poor eating habits
 - Sedentariness
- Prediabetes
- Smoking
- High blood pressure
- High cholesterol (hyperlipidemia)


II. Defining Local Problem

Target Population

- Men
- Aged 19 to 61 years
- Mostly African Americans
- Formerly homeless
- Past exposures to substance mis-use & food insecurity
- High rates of smoking
- Poor access to preventive health

Risks	Ρορι	rget lation en) %	Men AA %	Men City %	Men State %	U.S %
Smoking	8	33.0	20.9	27.6	16.8	17.5
Obesity	54.0		38.4	26.7	27.6	35.0
High B/P	Pre- hypertensi on (Assessed by Nurse)	Diagnosed Hypertension (On Treatment)				
	39.0	14.0	41.3	38.1	32.0	30.0

III. Current vs. Best Practices

Best Practices in DPP

Best Practices in DPP will offer effective programs to:

- Delay or avert progressions of T2D
- Reduce cost of diabetes treatments
- Decrease disease related complications

No DPP

- ≈ 40% will develop T2D in 4 to 5 years (Tuso, 2014)
- \uparrow sed cost of treatment vs. \downarrow sed cost of prevention

IV. Barriers & Facilitators

Anticipated Barriers

- Resistance to embrace recommended lifestyle changes
- Culture and social norms

Facilitators

Peer facilitation can help promote behavioral changes

Peer facilitation can increase program relevance and flexibility

- Resource limitations
- Hierarchical Leadership

Peer facilitation can reduce cost of program implementation and sustainability

Supportive internal stakeholders

V. Purpose Statement

To evaluate the effect of a nurse-led DPP on the formerly homeless men's healthy lifestyle choices.

- Controlling food portion sizes (i.e., reducing calorie)
- Reducing intake of sugar sweetened beverages (SSB)
- Increasing regular physical activity (≥150 minutes per week)
- Reducing daily counts of cigarettes

VI. Goals

Short-Term Goals

- 1 number of high-risk men enrolled in DPP
- Maintain the total **Long-Term Goals** number of attendees each ↓ participants' mean weight week
- \uparrow proportion of program \uparrow program's sustainability participants who achieve their:
 - Physical activity goals

- Dietary modification
- \downarrow participants' daily cigarette use.

- Improve participants' health-related quality of life

Project Development Questions

 Is lifestyle modification such as eating healthy feasible in an extreme hardship condition?

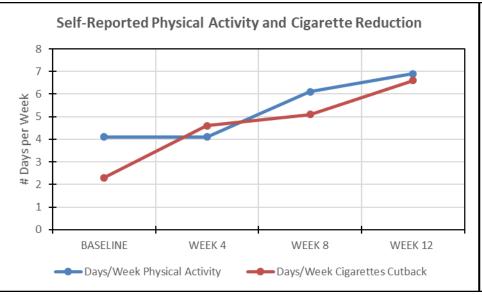
 What impact will trained diabetes peer facilitators have on healthy lifestyle choices?

VII. Summary of Literature Synthesis

- Empowering people with adequate information will encourage them to make lifestyle changes.
- As facilitators' knowledge about diabetes prevention increases, they become more autonomous and develop more self-efficacy and confidence about their ability to help others.
- Peer facilitators can help to promote program relevance and motivate participants to engage in healthier behaviors.

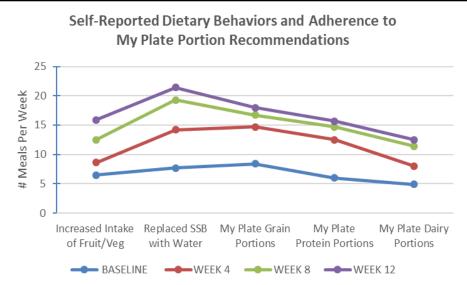
VIII. Methodology

- Guided by application of the RE-AIM (Reach, Effectiveness, Adoption, Implementation and Maintenance) framework.
- Tailored, nurse-led, community-based program was a modified version of DPP-GLB.
- Five (5) men ("Peer Facilitators" PFs) Formerly homeless; partakers in residential, employment academy; previously certified to deliver the DPP-GLB curriculum; voluntarily committed to facilitate a 12-week DPP core intervention to three of their peers (n=15).
- Participants ("peers") and PFs were formerly homeless men with substantial risk factors for T2D.


Methodology (cont.)

- Participants ("peers") kept weekly logs of their daily intake of fruits/vegetables, grains, proteins and dairy products; minutes of daily physical activity; numbers of cigarettes smoked daily; and number of times per day that they replaced sugar sweetened beverages (SSB) with water.
- PFs weighed their peers, collected weekly data logs, calculated BMIs at weeks 1 and 12, and encouraged their peers.
- Nurse program leader (Doctor of Nursing Practice [DNP] student, DPP-GLB master trainer) provided weekly mentoring and guidance, and collected weekly logs from PFs.

IX. Results: Statistical Analyses & t-Tests


DIABETES RISK FACTORS	T1 = BASELINE Mean (SD) Median [IQR]	T2 = WEEK 4 Mean (SD) Median [IQR]	T3 = WEEK 8 Mean (SD) Median [IQR]	T4 = WEEK 12 Mean (SD) Median ([QR]	T2 – T1 (p-value)	T3–T1 (p-value)	T4 – T1 (p-value)
WEIGHT	212.3 (79.6) 170 [94]	209.8 (77.4) 171 [94]	206.1 (74.7) 167 [92]	204.3 (75.0) 166 [48]	0.023	0.001	<0.001
BMI	30.8 (9.1) 26.6 [11.2]	-		29.7(8.6) 26.5 [10.7]	-		<0.001
PHYSICALACTIVITY	4.1 (2.6) 3 [5]	4.1 (2.3) 3 [4]	6.1 (1.4) 7 [2]	6.9 (0.5) 7 [0]	0.5	0.007	<0.001
CUT BACK* CIGARETTES	2.3 (2.8) 1 [5]	4.6 (0.0) 0 [5]	5.1 (2.3) 1 [5]	6.6 (0.9) 7 [0]	0.002	0.035	<0.001
REPLACED SUGAR SWEETENED BEVS W/ WATER	7.7 (5.9) 7 [12]	14.2 (6.8) 13 [3]	19.3 (4.9) 19 [8]	21.4 (2.3) 21 [4]	0.002	<0.001	<0.001
FRUIT/VEG	6.5 (4.3) 7 [7]	8.6 (4.9) 8 [9]	12.5 (5.4) 12 [9]	15.9 (4.0) 14 [8]	0.038	0.007	<0.001
GRAINS	8.4 (5.6) 7 [9]	14.7 (4.1) 14 [7]	16.7 (6.1) 18 [8]	18.0 (3.1) 18 [4]	0.001	<0.001	<0.001
PROTEINS	6.0 (4.4) 5 [6]	12.5 (5.8) 13 [5]	14.7 (4.7) 16 [5]	15.7 (4.9) 16 [4]	0.003	<0.001	<0.001
DAIRY	4.9 (4.2) 4 [6]	8.0 (6.5) 8 [12]	11.4 (7.2) 10 [12]	12.5 (4.7) 12 [6}	0.05	0.001	<0.001

Results: Statistical Analyses & t-Tests

Figure 1. Self-reported weekly increases from baseline to week 12: Days per week with physical activity > 30 minutes (mean=4.1 vs. 6.9, p < 0.001); number of days per week that cigarette smoking was decreased (mean=2.3 vs. 6.6, p < 0.001).

Figure 2. Number of meals per week from baseline to week 12 with increased fruit and vegetable intake (mean=6.5 vs.15.1; p < 0.001); sugar-sweetened beverages replaced with water (mean=7.7 vs. 21.4; p < 0.001); and adherence to My Plate recommendations about grain intake (mean = 8.4 vs. 18.0; p < 0.001); protein intake (mean = 6.0 vs. 15.7; p < 0.001); and dairy product intake (mean = 4.9 vs. 12.5; p < 0.001).

Results: Summary of Data Analyses

- Physical Activity: No significant change in mean # of days per week of physical activity between week 1 and week 4 (*p*=0.5). Significant ↑s in mean physical activity from weeks 1 to week 8 (*p*=0.007) and weeks 1 to week 12 (*p*=<0.001).
- Smoking: Significant ↑s in # of days per week that participants reported cutting back on cigarette smoking habits—baseline to week 4 (*p*=0.002), week 8 (*p*=0.035), and week 12 (*p*<0.001).</p>
- Fruits / Vegetables: Significant ↑s in # of meals per week that participants ate at least half a plate of fruits/vegetables at each meal—baseline to week 4 (*p*=0.038), week 8 (*p*=0.007) and week 12 (*p*<0.001).</p>
- Food Intake: Significant ↑s in # of meals per week that participants reported adhering to "My Plate" portion size recommendations for grain, protein, and dairy product intake baseline ranges to weeks 4, 8 and 12 ranges (p<0.001 to p=0.05)</p>
- SSB: Significant ↑s in # of meals per week that participants replaced SSBs with water—baseline to week 4 (*p=0.002*), week 8 (*p<0.001*) and week 12 (*p<0.001*).

Results: Unexpected Outcomes

- Total weight loss (n=15) over the 12-week intervention period = 120 pounds (range 1-24 pounds per person).
- Mean Weight Losses
 - Week 1 to 4 = 2.5 pounds (SD=4.5; *p*<0.023)
 - Week 1 to 8 = 6.2 pounds (SD=6.5; p<0.001)
 - Week 1 to 12 = 8.0 pounds (SD=6.0; p<0.001)

Results: Unexpected Outcomes

- High combined weight loss of 71 pounds was observed among six (6) men who were obese at baseline (mean weight loss=11.8lbs.; SD=7.0; p=0.005) (Tables 8, 10).
- Mean body mass index (BMI) ↓ sed from week 1 (30.8 kg/m²; SD=9.1) to week 12 (29.7 kg/m²; SD=8.6)(*p*=<0.001).
- Six smokers (roughly 55%) contacted the state's Quitline for inclusion in smoking cessation programs and two of these six (33.33%) were using nicotine patches before the project ended.

X. Limitations

- Inability to make statistical inferences about relationships among variables secondary to small sample size
- Inability to verify self-reported measures except for weekly weights, which were measured by the PFs.
- Men's relative lack of control over food preparation and available dietary choices due to the residential program's heavy reliance on donated food.
- Competing concerns about employment and basic life needs.
- Participants and PFs only committed to a 12-week program instead of the typical 22-week of DPP interventions.
- Limited financial resources can impede progressions of scalable DPP.

XI. Benefits

- ↑ in PFs' work-enhancing opportunities

XII. Conclusions & Sustainability

Self-reported adherences to recommended portion sizes in food intake combined with increases in physical activity might have:

 Contributed to improvements in participants' weights and BMIs

Partnerships with funders are necessary to:

- Foster employment opportunities
- Sustain and expand service capacity

XIII. References

- Aguiar, E. J., Morgan, P. J., Collins, C. F., Plotnikoff, R. C., Young, M. D., & Callister, R. (2016). Efficacy of the type 2 diabetes prevention using lifestyle education program RCT. American Journal of Preventive Medicine, 50(3), 353-364. doi: 10.1016/j.amepre.2015.08.020.
- Akter, S., Goto, A., & Mizoue, T. (2017). Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. Journal of Epidemiology, 27(12), 553–561. doi: 10.1016/j.je.2016.12.017
- Aldrige, R. W., Story, A., Hwang, S. W., Nordentoft, M., Luchenski, S. A., Hartwell, G., ..., Hayward, A. C. (2018). Morbidity and mortality in homeless individuals, prisoners, sex workers, and individuals with substance use disorders in high-income countries: a systematic review and meta-analysis. *The Lancet*, 391(10117), 241-250 doi: 10.1016/S0140-6736(17)31869-X
- American Diabetes Association [ADA]. (2018). Standards of medical care in diabetes 2018. Diabetes Care: The Journal of Clinical and Applied Research and Education, 41(Suppl.1), S1-S2. doi: 10.2337/dc18-Sint01
- Aroda, V. R., Knowler, W. C., Crandall, J. P., Perreault, L., Edelstein, S. L., Jeffries, S. L., ..., & Nathan, D. M., for the Diabetes Prevention Research Program Group. (2017). Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. *Diabetologia*, 60(9), 1601-1611. doi: 10.1007/s00125-017-4361-9
- Aziz, Z., Absetz, P., Oldroyd, J., Pronk, N. P., & Oldenburg, B. (2015). A systematic review of real-world diabetes prevention programs: learnings from the last 15 years. *Implementation Science: IS*, 10, 172. doi: 10.1186/s13012-015-0354-6
- Beckles, G. L. & Chou, C. F. (2016). Disparities in the prevalence of diagnosed diabetes United States, 1999-2002 and 2011-2014. *Centers for Disease Control and Prevention: Morbidity and Mortality Weekly Report, 65*(45), 1265-1269. Retrieved from https://www.cdc.gov/mmwr/volumes/65/wr/mm6545a4.htm
- Bergstro, A., Skeen, S., Duc, D. M., Blandon, E. Z., Estabrooks, C., Gustavsson, P., ... Wallin, L. (2015). Health system context and implementation of evidence-based practices development and validation of the Context Assessment for Community Health (COACH) tool for low- and middle-income settings. *Implementation Science*, 10, 120. doi: 10.1186/s13012-015-0305-2
- Bernstein, R. S., Meurer, L. N., Plumb, E. J., & Jackson, J. L. (2015). Diabetes and Hypertension Prevalence in Homeless Adults in the United States: A Systematic Review and Meta-Analysis. *American Journal of Public Health*, 105(2), e46–e60. doi: 10.2105/AJPH.2014.302330.
- Brace, A. M., Padilla, H. M., DeJoy, D. M., Wilson, M. G., Vandenberg, R. J., Davis, M. (2015). Applying RE-AIM to the Evaluation of FUEL YOUR LIFE: A worksite translation of DPP. Health Promotion Practice, 16(1), 28-35. doi: 10.1177/1524839914539329
- Centers for Disease Control and Prevention. (2017a). National Diabetes Statistics Report, 2017: Estimates of diabetes and its burden in the United States. Retrieved from https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
- Centers for Disease Control and Prevention {CDC}. (2017b, July 18). New CDC report: More than 100 million Americans have diabetes or prediabetes: Diabetes growth rate steady, adding to health care burden. Retrieved from https://www.cdc.gov/media/releases/2017/p0718-diabetes-report.html
- Centers for Disease Control and Prevention. (2017c, August 29). About adult BMI: Healthy weight. Retrieved from https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
- Gary-Webb, T. L., Walker, E. A., & Realmuto, L. (2018). Translation of the National Diabetes Prevention Program to engage men in disadvantage neighborhoods in New York City: A description of Power Up for Health. American Journal of Men's Health, 12(4), 998–1006. doi: 10.1177/1557988318758788
- Harden, S. M., Smith, M. L., Ory, M. G., Smith-Ray, R. L., Estabrooks, P. A., & Glasgow, R. E. (2018). RE-AIM in Clinical, Community, and Corporate Settings: Perspectives, Strategies, and Recommendations to Enhance Public Health Impact. *Frontiers in public health*, *6*, 71. doi:10.3389/fpubh.2018.00071
- Mudaliar, U., Zabetian, A., Goodman, M., Echouffo-Tcheugui, J. B., Albright, A. L., Gregg, E. W., Mohammed, K. A. (2016). Cardiometabolic Risk Factor Changes Observed in Diabetes Prevention Programs in US Settings: A Systematic Review and Meta-analysis. *PLoS Med*, *13*(7): e1002095. doi: <u>10.1371/journal.pmed.1002095</u>
- Nemah, H. H., Sebert Kuhlmann, A. K., & Tabak, R. G. (2016). Effectiveness of program modification strategies of the diabetes prevention program: A systematic review. *The Diabetes Educator*, *42*(2), 153–165. doi: 10.1177/0145721716630386
- Ramchand, R., Ahluwalia, S. C., Xenakis, L., Apaydin, E., Raaen, L., & Grimm, G. (2017). A systematic review of peer-supported interventions for health promotion and disease prevention. *Preventive Medicine*, 101, 156-170. doi: 10.1016/j.ypmed.2017.06.008
- Tabak, R. G., Sinclair, K. A., Baumann, A. A., Racette, S. B., Sebert Kuhlmann, A., Johnson-Jennings, M. D., & Brownson, R. C. (2015). A review of diabetes prevention program translations: use of cultural adaptation and implementation research. *Translational Behavioral Medicine*, *5*(4), 401–414. doi: 10.1007/s13142-015-0341-0

XIV. Acknowledgements

- Katherine Fornili, DNP, MPH, RN, CARN, FIAAN (Assistant Professor, Preceptor)
- Claire Bode, DNP, RN, CRNP (Assistant Professor, Project Implementation)
- Kathleen M Buckley PhD, RN, IBCLC (Associate Professor, Advisor)
- M. Kaye Kramer, DrPH, MPH, RN (Chief Scientific Officer, Innovative Wellness Solutions / PARK 360)
- Facilitators ("The Trail Blazers), peers, staff, and volunteers